On the Observability and Self-Calibration of Visual-Inertial Navigation Systems
نویسنده
چکیده
We examine the observability properties of visual-inertial navigation systems, with an emphasis on self-calibration of the six degrees-of-freedom rigid body transform between a camera and an inertial measurement unit (IMU). Our analysis depends on a differential geometric formulation of the calibration problem, and on an algebraic test for the ‘observability rank condition’, originally defined by Hermann and Krener. We demonstrate that self-calibration of the camera-IMU transform is possible, under a variety of conditions. In contrast with previous work, we show that, in the presence of a known calibration target, both the local gravity vector and the IMU gyroscope and accelerometer biases are simultaneously observable (given sufficient excitation of the system). Further and more generally, we show that for a moving monocular camera and IMU, the absolute scene scale, gravity vector, and the IMU biases are all simultaneously observable. This result implies that full self-calibration is possible, without the need for any prior knowledge about the environment in which the system is operating.
منابع مشابه
Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملResearch on Initial Alignment and Self-Calibration of Rotary Strapdown Inertial Navigation Systems
The errors of inertial sensors affect the navigation accuracy of the strapdown inertial navigation system (SINS) and are accumulated over time in nature. In order to continuously maintain the high navigation accuracy of vehicles for a long time period, an initial alignment and self-calibration is necessary after the SINS starts. Additionally, the observability analysis is one of the key techniq...
متن کاملApplications of Inertial Navigation Systems in Medical Engineering
Inertial navigation systems are of the most important and practical systems in determining the velocity, position and attitude of the vehicles and different equipment. In these systems, three accelerometers and three gyroscopes are used to measure linear accelerations and angular velocities of vehicles, respectively. By using the output of these sensors and special inertial algorithms in differ...
متن کاملVisual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration
Visual and inertial sensors, in combination, are able to provide accurate motion estimates and are well-suited for use in many robot navigation tasks. However, correct data fusion, and hence overall performance, depends on careful calibration of the rigid body transform between the sensors. Obtaining this calibration information is typically difficult and time-consuming, and normally requires a...
متن کاملOn the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters—Part II: Observability/Estimability Analysis
This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the ful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008